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Chapter 1
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Abstract  The performance of demand-driven caching is known to depend on the
locality of reference exhibited by the stream of requests made to the
cache. In spite of numerous efforts, no consensus has been reached on
how to formalize this notion, let alone on how to compare streams of
requests on the basis of their locality of reference. We take on this issue
with an eye towards validating operational expectations associated with
the notion of locality of reference. We focus on two “folk theorems,”
namely (i) The stronger locality of reference, the smaller the miss rate
of the cache; (ii) Good caching is expected to produce an output stream
of requests exhibiting less locality of reference than the input stream of
requests.

We discuss these two folk theorems in the context of a cache operat-
ing under a demand-driven replacement policy when document requests
are modeled according to the Independent Reference Model (IRM). As
we propose to measure strength of locality of reference in a stream of
requests through the skewness of its popularity distribution, we intro-
duce the notion of majorization as a mean for capturing this degree of
skewness. We show that these folk theorems hold for caches operating
under a large class of cache replacement policies, including the optimal
policy Ao and the random policy, but may fail under the LRU policy.
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1. Introduction

Web caching aims to reduce network traffic, server load and user-
perceived retrieval latency by replicating “popular” content on (proxy)
caches that are strategically placed within the network, e.g., Wang (1999)
(and references therein). This approach is a natural outgrowth of caching
techniques which were originally developed for computer memory and
distributed file sharing systems, e.g., Aven, Coffman and Kogan (1987);
Coffman and Denning (1973); Phalke and Gopinath (1995) (and refer-
ences therein). However, the exponential growth of the World Wide Web
and its specific circumstances are challenging current cache architectures
to meet the complementary mandates of speed, scalability and reliability
which are central to delivering a satisfactory user experience.

Although these challenges have renewed interest in caching in gen-
eral, some basic issues are still not well understood. Indeed, the perfor-
mance of any form of caching is determined by a number of factors, chief
amongst them the statistical properties of the streams of requests made
to the cache. One important such property is the locality of reference
present in a stream of requests whereby “bursts of references are made
in the near future to objects referenced in the recent past.” The impor-
tance of locality for caching was first recognized by Belady (1966) in
the context of computer memory, and attempts at characterizing it were
made early on by Denning (1968) through the working set model. Re-
cently, a number of studies have shown that streams of requests for Web
objects exhibit strong locality of reference! (see e.g., Jin and Bestavros
(2000b); Mahanti, Williamson and Eager (2000)). Like the notion of
burstiness used in traffic modeling, locality of reference, while endowed
with a clear intuitive content, admits no simple definition.

Thus, and not surprisingly, in spite of numerous efforts, no consensus
has been reached on how to formalize the notion, let alone compare
streams of requests on the basis of their locality of reference.? To the
best of the authors’ knowledge, this lack of consensus has precluded the
formal derivation of the following “folk theorems”:

1. Folk theorem on miss rates — The stronger the locality of ref-
erence in the stream of requests, the smaller the miss rate since the
cache ends up being populated by objects with a higher likelihood
of access in the near future. Such a property, if true, would con-
firm the central role played by locality of reference in shaping cache

LAt least in the short timescales
2 An exception can be found in a recent paper by Fonseca et al. (2003).
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performance. In fact, the very presence of locality of reference in
the stream of requests is what makes caching at all possible; and

2. Folk theorem on output streams — Good cache replacement
strategies “absorb” locality of reference to a certain extent by pro-
ducing a stream of misses from the cache — its so-called output —
which exhibits less locality of reference than the input stream of
requests. In the context of multi-level caching, this reduction prop-
erty is often perceived as one of the main reasons for why caching
looses its effectiveness after some level in a hierarchy of caches.

Such folk theorems are expected to hold for demand-driven caching that
exploits recency of reference. Interest in establishing them under a spe-
cific definition of locality of reference stems from a desire to validate its
operational significance. Counterexamples would cast some doubts as to
whether the particular definition indeed captures the intuitive meaning
of locality of reference.

In the past such a program has been carried out for a number of key
notions of traffic engineering: For instance, the convex stochastic or-
derings were shown to capture the notion of variability, in the process
leading to various proofs that “determinism minimizes waiting times,”
e.g., Baccelli and Makowski (1989). More recently, the theory of mul-
tivariate stochastic orderings has been used to formalize the belief that
positive correlations lead to larger buffer levels at a discrete-time infi-
nite capacity multiplexer queue, viz. if the input traffic is larger than
its independent version in the supermodular ordering, then their corre-
sponding buffer contents are similarly ordered in the increasing convex
ordering. This has been demonstrated for a number of basic traffic mod-
els in Vanichpun and Makowski (2002).

In this chapter we survey and extend recent results by the authors
concerning a formal investigation into the folk theorems mentioned ear-
lier, albeit in a simple framework. The results for miss rates and output
streams are available in Vanichpun and Makowski (2004a) and Vanich-
pun and Makowski (2004b), respectively, and the interested reader is
referred to these papers for additional information. In the next section,
we provide a roadmap to the viewpoint we have adopted and to the
ensuing results, as well as the organization of the chapter.

2. Navigating the chapter - A roadmap
2.1 Locality via popularity

Our first task consists in identifying the notion of locality of reference
to be used here. We begin with the widely accepted observation that the
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two main contributors to locality of reference are temporal correlations
in the streams of requests and the popularity distribution of requested
objects. To describe these two sources of locality, we assume the follow-
ing generic setup which is used throughout: We consider N cacheable
items or documents, labeled i = 1,..., N, and we write N := {1,..., N}.
The successive requests arriving at the cache are modeled by a sequence
{R, t=0,1,...} of N-valued rvs.

1. The popularity of the sequence of requests {R;, t = 0,1,...} is
defined as the pmf p = (p(i),...,p(IN)) on N given by

t—1
. .1 . .
p(i) == lim n g_ol[RT:z] as., i=1,...,N (1.1)

t—o00

whenever these limits exist (and they do in most models treated in the
literature).

2. Temporal correlations are more delicate to define due to the “cate-
gorical” nature of the requests {R;, t =0, 1,...}. Indeed, it is somewhat
meaningless to use the covariance function

v(s,t) := Cov|Rs, Ry], s,t=0,1,....

as a way to capture these temporal correlations as is traditionally done in
other contexts. This is because the rvs {R;, t =0,1,...} take values in
a discrete set. We took {1,..., N} but could have selected any set of N
distinct points in an arbitrary space. Thus, the actual values of the rvs
{Ry, t =0,1,...} are of no consequence, and the focus should instead be
on the recurrence patterns exhibited by requests for particular documents
over time. The literature contains several metrics to do this, including
the inter-reference time of Phalke and Gopinath (1995), the working set
size of Denning (1968) and the stack distance, see e.g., Almeida et al.
(1996).

We shall focus ezclusively on popularity as the measure of locality
of reference. In fact, to isolate its contribution, we deal with the sit-
uation where there is mo temporal correlations in the stream of re-
quests as would be the case under the so-called Independence Refer-
ence Model (IRM). More precisely, under the IRM with popularity pmf
p = (p(1),...,p(N)), the successive requests {R;, t = 0,1,...} form a
sequence of i.i.d. N-valued rvs, each distributed according to the pmf p,
ie.,

PR, =i]=p@l), i=1,...,N (1.2)

for all t = 0,1,... and (1.1) holds with the given pmf p by the Law of
Large Numbers.
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IRMs do display locality of reference even though there is no temporal
correlations. This is best appreciated by considering the limiting cases:
If p is extremely unbalanced with p = (1 — d,¢,...,¢) (with § = (N —
1)e), a reference to document 1 is likely to be followed by a burst of
additional references to document 1 provided (N —1)e < 1—46. It seems
natural to deem this situation as one exhibiting very strong locality of
reference. The exact opposite conclusion holds if the popularity pmf
p were uniform, i.e., p(1) = ... = p(N) = +, for then the successive
requests {R;, t =0,1,...} form a truly random sequence, in which case
there is no locality of reference. Thus, the skewness of p appears to
act as an indicator of the strength of locality of reference present in the
stream, under the intuition that the more “balanced” the pmf p, the
weaker the locality of reference.

2.2 Majorization and Schur-concavity

As we restrict ourselves to the class of IRMs,? the question naturally
arises as to whether popularity pmfs can be compared on the basis of
their skewness so that versions of the folk theorems discussed earlier can
be established. More formally, consider two IRMs with popularity pmfs
p and g (on N), and let M(p) and M (q) denote their miss rates under
some cache replacement policy. We seek a way to formally compare the
pmf vectors p and g, with the interpretation that if p is less skewed than
q, then the IRM with popularity pmf p has less locality of reference than
the IRM with popularity pmf g, and the folk theorem on miss rates holds
as

M(q) < M(p). (1.3)

We turn to the concept of majorization discussed in the monograph of
Marshall and Olkin (1979) as a way to characterize such imbalance in the
components of popularity pmfs. Motivated by our earlier discussion, we
say that the IRM with popularity pmf p has less locality of reference than
the IRM with popularity pmf q if p is majorized by q, written p < q.
As elegantly demonstrated in the monograph of Marshall and Olkin
(1979), this notion has found widespread use in many diverse branches
of mathematics and their applications. What is more, comparison results
such as (1.3) can now be explored through the rich and structured class
of monotone functions associated with majorization, the so-called Schur-

3This may not be too much of a limitation given that the IRM is the most basic request model;
it is often used for checking various properties, see e.g., Breslau et al. (1999). Moreover,
recent results by Jelenkovic and Radovanovic (2003) suggest some form of insensitivity to the
statistics of streams of requests. Of course, more work along these lines is needed.
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convex/concave functions. In fact, the comparison (1.3) is essentially a
statement concerning the Schur-concavity of certain functionals.

Within this framework, if p* denotes the popularity pmf for the output
from the cache, then the folk theorem on the stream of misses takes the
form

p* < p. (1.4)
Both statements (1.3) and (1.4) were investigated in the context of a
cache operating under a demand-driven replacement policy when docu-
ment requests are modeled according to the IRM. We now summarize
some of the findings.

2.3 The folk theorems under RORA policies

In Vanichpun and Makowski (2004a) and Vanichpun and Makowski
(2004b), the authors have shown the validity of both statements (1.3)
and (1.4) for a number of policies, namely the optimal policy Ay, the
random policy and the First-In/First-Out (FIFO) policy. These prop-
erties hold in all circumstances, i.e., for an arbitrary popularity pmf for
the IRM input and for arbitrary cache sizes. To the best of the authors’
knowledge, these results provide the first formal proof of the folk theo-
rems. In this chapter, we have extended these positive results to a very
large class of replacement policies, known as Random On-demand Re-
placement Algorithms (RORA); these policies generalize the policy Ay,
the random policy and the FIFO policy.

2.4 Counterexamples and asymptotics

However, there are policies for which the comparisons (1.3) and (1.4)
do not always hold. One such policy is the Least-Recently-Used (LRU)
replacement policy, a popular self-organizing eviction policy. Indeed, we
first exhibit situations where the miss rate of the LRU policy is larger
when selecting an IRM with a more balanced popularity pmf. Yet, when
the popularity pmfs are Zipf-like, simulations show that the comparison
(1.3) still does hold for the LRU policy. We formally establish this fact
only in the limiting regime where the skewness parameter of the Zipf-like
pmf is large, i.e., highly skewed.

It also happens that the LRU policy fails to reduce locality of reference
in the sense of (1.4). We explore the issue through counterexamples
which are developed within the class of Zipf-like popularity pmfs. For
this class of input pmfs, we identify a condition involving the cache
size and the number of cacheable documents under which (1.4) fails to
occur at large enough values of the skewness parameter of the Zipf-like
pmf. Under this condition, which is reasonably satisfied in practice, we
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show that the output pmf p* may not exhibit less locality of reference
than the input pmf p when the latter has too much of it to begin with.
Additional simulations were carried out and suggested a conjecture as
to when LRU caching indeed reduces locality of reference with Zipf-like
input pmfs. All indications point to the possibility that for small enough
cache sizes, the desired comparison of p and p* will hold; this will be
the subject of future investigation.

While the discussion given here is restricted to IRMs, we believe that
similar results may hold for more general input models.

2.5 Organization

The chapter is organized as follows: The basic model of cache man-
agement is given in Section 1.3. The miss rate and output of a cache
are discussed in Section 1.4 and 1.5, respectively. Majorization and the
companion notion of Schur-convexity are introduced in Section 1.6 and
1.7, respectively. We obtain the basic comparison results for the output
in Section 1.8. The RORA cache policies are defined in Section 1.9,
and the comparison results for their miss rates and outputs are given in
Section 1.10 and 1.11, respectively. Zipf-like distributions are discussed
in Section 1.12. Comparison results for the miss rate and output under
the LRU policy are collected in Section 1.13 and 1.14, respectively.

3. Demand-driven caching

Consider a universe N’ = {1,..., N} of N cacheable documents. The
system is composed of a server where a copy of each of these N docu-
ments is available, and of a cache of size M (1 < M < N). Documents
are first requested at the cache: If the requested document has a copy
already in cache (i.e., a hit), this copy is downloaded from the cache by
the user. If the requested document is not in cache (i.e., a miss), a copy
is requested instead from the server to be put in the cache. If the cache
is already full, then a document already in cache is evicted to make place
for the copy of the document just requested. The document selected for
eviction is determined through a cache replacement or eviction policy.*

We now develop below a mathematical framework to address some of
the issues discussed in this chapter. Additional details are available in
the monographs by Aven, Coffman and Kogan (1987) and by Coffman
and Denning (1973). We begin with some notation that will be used
repeatedly: Let A*(M;N) be the collection of all unordered subsets of
size M of N, and let A(M;N') be the collection of all ordered sequences of

4We use the terms interchangeably.
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M distinct elements from N. We write {i1,...,ia} (vesp. (i1,...,90m))
to denote an element in A*(M;N) (resp. A(M;N)).

3.1 A simple framework

Consecutive user requests are modeled by a sequence of N -valued rvs
{Ry, t=0,1,...}. For simplicity we say that request R; occurs at time
t=0,1,.... Let S; denote the cache just before time t so that S; is a
subset of N with at most M elements. The decision to be performed
according to the eviction policy in force is the identity U; of the document
in S; which needs to be evicted in order to make room for the request
R; (if the cache is already full).

Demand-driven caching considered here is characterized by the dy-
namics

Sy if Ry € Sy
Sty1 = St + Ry if Ry &S, |St| <M (15)
Sy~ U+ Ry if R & Si,|S:] =M

for all t = 0,1,..., where |S;| denotes the cardinality of the set S;, and
S¢— Ui+ Ry denotes the subset of {1,..., N} obtained from S; by remov-
ing Uy and then adding R; to it, in that order. These dynamics reflect
the following operational assumptions: (i) actions are taken only at the
time requests are made, hence the expression demand-driven caching;
(ii) a requested document not in cache is always added to the cache if
the cache is not full at the time of request; and (iii) eviction is manda-
tory if the request R; is not in cache S; and the cache S; is full, i.e.,
S| = M.

3.2 Admissible IRMs and reduced dynamics

Throughout the stream of requests {R;, t = 0,1,...} is modeled ac-
cording to the standard Independence Reference Model (IRM) with pop-
ularity pmf p = (p(1),...,p(N)). To avoid uninteresting situations, it
is always the case that

p(i)>0, i=1,...,N. (1.6)

A pmf p on {1,..., N} satisfying (1.6) is said to be admissible.

Under this non-triviality condition (1.6), every document will even-
tually be requested by virtue of (1.1). Thus, as we have in mind to
study long term characteristics under demand-driven replacement poli-
cies, there is no loss of generality in assuming (as we do from now on)
that the cache is full, i.e., for all t = 0,1, ..., we have |S;| = M and (1.5)
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simplifies to

S if Ry € S;
St { S, — U, + Ry if Ry & Si. (1.7)
3.3 Cache states and eviction policies

The decisions {U;, t = 0,1,...} are determined through an eviction
policy and several examples will be presented shortly.

Consider a given eviction policy m. We assume that the dynamics
of the cache can be characterized through the evolution of suitably de-
fined variables {€, t = 0,1,...} where §; is known as the state of the
cache at time t. The cache state is specific to the eviction policy and
is selected with the following in mind: (i) The set S; of documents in
the cache at time ¢ can be recovered from ; (ii) the cache state €411
is fully determined through the knowledge of the triple (2, Ry, U;) in
a way that is compatible with the dynamics (1.7); and (iii) the evic-
tion decision U; at time t can be expressed as a function of the past
(Q0, Ro, Upy .., -1, Re—1, Up—1, 4, Ry) (possibly through suitable ran-
domization), i.e., for each ¢ = 0,1,..., there exists a mapping m; such
that

Uy = m(Qo, Ro, Up, ..., Qy—1, Ri—1, U1, 4, Ri; Zy)

where the rv =y is taken independent of the past (Qg, Ry, . .., Ui—1, Q4, Ry).
Collectively the mappings {m;, t = 0,1,...} define the eviction policy .

We close this section with some examples of eviction policies which
have been discussed in the literature, see e.g., the monographs by Aven,
Coffman and Kogan (1987) and by Coffman and Denning (1973):

According to the random policy, when the cache is full, the docu-
ment to be evicted is selected randomly from the cache according to the
uniform distribution.

Any permutation o of {1,..., N} induces an ordering of the docu-
ments by considering the documents o(1),0(2),...,0(N) as “ranked”
in decreasing order. This ranking of the documents allows us to de-
fine the eviction policy A, as follows: When at time t = 0,1,..., the
cache S; is full and the requested document R; is not in the cache, the
policy A, prescribes the eviction of the document U; given by U; =
argmax (07 (j) : j €S¢). The documents o(1),...,0(M — 1), once
loaded in the cache, will remain there, and in the steady state, the cache
under the policy A, will contain the documents o(1),...,0(M — 1).

The so-called policy Ag is associated with the underlying popularity
pmf p of the request stream, and evicts the least popular document in
the cache, i.e., U, = argmin (p(j): j € S;) for each t = 0,1,.... This
policy Ag coincides with the policy A,+ associated with the permutation



10

o* of {1,..., N} which orders the components of the underlying pmf p
in decreasing order, namely p(c*(1)) > p(6*(2)) > ... > p(c*(N)).

Under the random policy and the policies A,, we can take the cache
state to be the (unordered) set of documents in the cache, i.e., the cache
state is an element of A*(M;N) and Q; = S; for all t =0,1,.. ..

The FIFO policy replaces the document which has been in cache for
the longest time, while the LRU policy evicts the least recently requested
document already in cache. The definitions of the FIFO and LRU poli-
cies necessitate that the cache state be an element of A(M;N') with €
being a permutation of the elements in S; for all t =0,1,....

4. The miss rate of a cache

A standard performance metric to compare various caching policies is
the miss rate of the cache. This quantity has the interpretation of being
the long-term frequency of the event that the requested document is
not in the cache, and therefore determines the effectiveness of a caching
policy.

Under a cache replacement policy 7, the miss rate M, (p) is defined
as the a.s. limit

Mz (p) = lim % Y 1[R- ¢ 5] as. (1.8)
T=1

where S; denotes the set of documents in cache operating under the
replacement policy 7 at time 7 when the input to the cache is the re-
quest stream {R;,t = 0,1...}. Almost sure convergence in (1.8) (and
elsewhere) is taken under the probability measure on the sequence of rvs
{4, Ry, Uy, t =0,1,...} induced by the underlying IRM with popularity
pmf p through the eviction policy .

Under most cache replacement policies of interest, the limit (1.8) ex-
ists and admits a simple expression under the assumption that the a.s.
limit

1
Q=(s;p) = tlggo n Z 1[S;=s] a.s. (1.9)
=1
exists for each element s in A*(M;N). Although the limits (1.8) and
(1.9) are often constants which are independent of the initial cache state
Qg, this is not always the case as be seen in the discussion of RORA
policies in Sections 1.9 and 1.10.

THEOREM 1.1 Consider an eviction policy 7 such that the limits (1.9)
exist under the IRM with popularity pmf p. Then, the limit (1.8) exists
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and is given by

N
Mi(p) = D> p(i) > Qulsp) (1.10)
i=1 SEAS(M;N)
= > Qulsip))_p() (1.11)
seA*(M;N) ids

where A (M;N') denotes the set of elements in A*(M; N') which do not
contain i, i.e., NX(M;N) :={s = {i1,...im} € A*(M;N): i € s} .

Theorem 1.1 is a standard result under IRMs; its proof can also be found
in Vanichpun (2004). The existence of the limits (1.9) is a mild assump-
tion which is satisfied under all eviction policies of interest considered
here (and in the literature). Indeed, under the IRM with popularity
pmf p, the sequence of cache states {€;, ¢t = 0,1,...} typically form
a Markov chain over a finite state space, and standard ergodic results
readily yield the existence of the limits (1.9). This issue will be briefly
discussed in each situation at the appropriate time.

5. The output of a cache
5.1 Definitions

Under the demand-driven caching operation (1.7), the output of the
cache is the sequence of requests that incur a miss, i.e., when the in-
coming request cannot find the desired document in the cache. More
precisely, a miss occurs at time t if R; is not in Sy. Thus, we define
recursively the time indices {vg, k=0,1,...} by

vo=0; Vg1 :=ve+ ey, k=0,1,...

with
prpe1 =inf {0 =1,2,...0 Ry ¢ & Sy, +¢}

where we use the convention pgy; = oo if either vy = oo or if v is
finite but the set of indices entering the definition of py4q is empty.
With § denoting an element not in A/, we define the output process
{R}, k=1,2,...} simply as

" {R,,k if v, < 00

KT S if v, = 0

for each k =1,2,.... The requests {R},k =1,2,...} are those requests
among {R,t = 0,1,...} which incur a miss and which get forwarded to
the server (or to the higher level cache in a hierarchical caching system).
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The statistics of the output stream {R}, k = 1,2,...} are determined
by the statistics of the input stream {R;,t = 0,1,...} and by the cache
replacement policy 7 in use. We are interested in evaluating the popu-

larity pmf p% = (pX(1),...,pr(N)) defined by

*N L
pr(i) == Kh_r)n@—Zl a.s. (1.12)
for each i = 1,2,..., N, whenever these limits exist.

5.2 Finding p;

The remainder of this section is devoted to the existence and form of
the limits (1.12).

THEOREM 1.2 Consider an eviction policy 7 such that the limits (1.9)
exist under the IRM with popularity pmf p. For each i =1,..., N, the
limit (1.12) exists and is given by

p(i)ma(i; p)

(7)) = 1.13
P > p(G)ma(j; p) (19

where we have set

ma(i;p) = > Qnlsip). (1.14)

sEAS(M;N)

A proof of Theorem 1.2 is given in Vanichpun and Makowski (2004b).
Note that the existence of the limits (1.9) implies

ma(isp) = Y (tlggo % > o1[s, = 8]>

SGA*(M'N)

= tlirgotz Z 1[57-:8]

T=1seAr(M;N)
t

1
= lim — 1[i ¢ S;]  a.s. (1.15)
t—oo t
T=1
for each i = 1,..., N, and m,(i; p) thus represents the fraction of times

that document ¢ will not be in the cache. This quantity is determined
by the popularity pmf p of the input to the cache and by the eviction
policy 7 in use.
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Inspection of (1.10) and (1.14) reveals that

N

Z p(i)mﬂ'(i; p) = Mﬂ'(p)

i=1
and this leads via (1.13) to a simple connection between the miss rate
of an eviction policy and the pmf of its output in the form

p(i)mﬂ (iS p)
My (p)

Thus, p%(i) can be viewed as the ratio between the miss rate of the cache
when the requested document is 7 and the overall miss rate of the cache.

ph(i) = i=1,...,N. (1.16)

6. Majorization — A primer

The concept of majorization provides a powerful tool to formalize
statements concerning the relative skewness in the components of two
vectors, viz., the components (z1,...,xy) of the vector & are “more
spread out” or “more balanced” than the components (yi,...,yn) of
the vector y: For vectors « and y in RY, we say that @ is majorized by
y, and write x < y, whenever the conditions

Yowg <Yy n=12...,N-1 (1.17)
i=1 i=1

and
N N
Sw=Yu (1.18)
i=1 i=1

hold with T[] > Z[9) > .2 TIN] and (5 > ip) > .2 YIN] denoting

the components of @ and y arranged in decreasing order, respectively.
We begin with a sufficient condition for majorization which is ex-

tracted from the discussion in Marshall and Olkin (1979), B.1, p. 129.

PROPOSITION 1.3 Let @ and y be distinct elements of RY such that
(1.18) holds. Whenever, x1 > xo > ... > xy, If there exists some k =
1,...,N—1suchthatx; <wy;,i=1,...,k,andz; > y;, 1 = k+1,..., N,
then the comparison x < y holds.

The following sufficient condition for majorization will be useful in the
sequel; it was already announced in Marshall and Olkin (1979), B.1.b,
p- 129, without proof.
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THEOREM 1.4 Let x and y be distinct elements of R™ such that (1.18)
holds. Whenever x1 > x9 > ... > xny > 0, and the ratios g—i, 7 =
1,..., N, are decreasing in i, we have the comparison * < y.

With any element of RY such that Zf\; 1Ti # 0, we associate the
normalized vector & as the element of RY defined by

N

T = (in)_l(ﬂcl,...,x]v).

i=1
With this notation we can present a useful corollary to Theorem 1.4.

COROLLARY 1.5 Let « and y be distinct elements of RY such that
Zi]\il y; > 0. Whenever 1 > x9 > ... > xx > 0, and the ratios Z—i,
i1 =1,...,N, are decreasing in i, we have the comparison & < Y.

The following reformulation of Corollary 1.5 is used in the sequel.

LEMMA 1.6 Let  and y be distinct elements of RN such that x; > 0,

i=1,...,N and 3N y; > 0. If & > % whenever z; > x; for distinct
i J

1,7 =1,..., N, then the comparison * < y holds.

7. Schur-convexity

Key to the power of majorization is the companion notion of mono-
tonicity associated with it: An R-valued function ¢ defined on a set A
of R¥ is said to be Schur-convex (resp. Schur-concave) on A if

p(x) < p(y) (resp. p(x) > ¢(y))

whenever & and y are elements in A satisfying < y. In other words,
Schur-convexity (resp. Schur-concavity) corresponds to monotone in-
creasingness (resp. decreasingness) for majorization (viewed as a pre-
order on subsets of RY).

Let o denote a permutation of {1,...,N}. With any element x in
RY, we associate the permuted vector o(x) in RY through the relation

o(x) = (To1), > To(n))-

Let {0y, i = 1,...,N!} be a given enumeration of all the N! permuta-
tions of {1,..., N}; this enumeration is held fixed throughout the chap-
ter. A subset A of RY is said to be symmetric if for any = in A, the
element o;(x) also belongs to A for each i = 1,..., N!. Moreover, for
any subset A of RY, a mapping ¢ : A — R is said to be symmetric
if A is symmetric and for any « in A, we have ¢(o;(x)) = ¢(x) for
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each i = 1,...,N!. If the mapping ¢ : A — R is Schur-convex (resp.
Schur-concave) with symmetric A, then ¢ is necessarily symmetric since
oi(x) < & < o;(x) implies p(o;(x)) = p(x) for each i =1,..., NL

In the following, we have collected some useful technical results con-
cerning Schur concavity. As in Marshall and Olkin (1979), p. 78, for each
M =1,...,N, the elementary symmetric function Eyr N : RY - R is
defined by

Eyn(x) = > iy -+ Ty, w RV (1.19)
{i1,-sin YEAX(MN)

By convention we write Eg y(z) = 1 for all & in RY. Tt is well known (
Marshall and Olkin (1979), Prop. F.1., p. 78) that the function Ejs n is
Schur-concave on ]Rf for each M =0,1,..., N.

The following result is due to Schur (see Marshall and Olkin (1979),
F.3, p. 80) and will be key to a number of proofs.

PROPOSITION 1.7 For each M =1,..., N, the mapping ®y v : ]Rf —
R given by’
By () N
Py ny(lx) =—"—"—, =x€ R
» ( ) EMfl,N(:L') +

is increasing,% symmetric and concave, thus increasing and Schur-concave
on Rf .

With vectors ¢ and @ in RY, we associate the element ¢ -  of RV
defined by t - « := (t1x1,...,tyzy). With this notation we can state

PROPOSITION 1.8 Assume the mapping 1 : ]Rf — IR to be concave and
the mapping h : R ' R to be increasing, symmetric and concave. For
any non-zero vector t in RY, the mapping 1 : ]Rf — IR defined by

Y(x) == h(d(t - o1 (), ..., ot onm(x))), =cRY

is symmetric and concave, thus Schur-concave on ]Rf .

8. Comparing input and output

Recall that we have in mind to compare the strength of locality of
reference in two streams of requests through a majorization ordering of

5For @ in Rﬁ such that Epr—q n(2) = 0, then Ej n(2) = 0 and we set &y y(x) = 0 by
continuity.
6Here, increasing means increasing in each argument.
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their popularity pmfs. The next result constitutes a first step in the
process of comparing input and output popularity pmfs.

THEOREM 1.9 Consider an eviction policy 7 such that the limits (1.9)
exist under the IRM with popularity pmf p. If m;(i;p) > m.(j;p)
whenever p(i)m,(i;p) < p(j)my(j;p) for distinct i,5 = 1,..., N, then
it holds that p% < p provided m,(i;p) > 0 for eachi =1,...,N.

Proof. This claim is a simple consequence of Lemma 1.6: We take
y = p and x given by z; = p(i)m,(i;p), i = 1,..., N. Thus, we have
& = p; while y = p, and the requisite monotonicity assumptions hold. W

The assumptions of Theorem 1.9 ensure that m(i;p) < mx(j;p)
and p(j) < p(i) occur simultaneously for distinct 4,7 = 1,..., N. This
leads to defining a caching algorithm 7 as good if for every admissible
pmf p, we have m(i;p) < mg(j;p) whenever p(j) < p(i) for distinct
i,7 =1,...,N. Thus, a caching policy which satisfies the assumptions
of Theorem 1.9 is necessarily a good policy. However, as we shall see in
the case of the LRU policy, this by itself is not sufficient to ensure that
the output popularity pmf is more balanced than the input popularity
pmf.

Repeatedly we shall encounter output pmfs which assume the generic
form used in Theorem 1.10 below.

THEOREM 1.10 Let p be an admissible pmf on N, and for each i =
1,..., N, define an (N — 1)-dimensional vector

P9 = (p(1),...,p(i —1),p(i +1),...,p(N)).

For each M =1,2,...,N — 1, the pmf p}, on N defined by

p(i)Exr.nv-1(p™)
S () Ern—1(pY))

satisfies the comparison py; < p.

phy(i) = i=1,...,N (1.20)

A proof of this theorem builds on Lemma 1.6 and is given in Vanichpun
and Makowski (2004b).
9. Random on-demand replacement

We now introduce a large class of demand-driven eviction policies
called Random On-demand Replacement Algorithms (RORA). This class
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of policies generalizes many well-known caching policies, e.g., the ran-
dom and FIFO policies, as well as the optimal policy Ag. Moreover,
the Partially Preloaded Random Replacement Algorithms proposed by
Gelenbe (1973) form a subclass of RORAs.

9.1 Defining RORAs

A RORA policy follows the demand-driven caching rule (1.7) (under
the customary assumption that the cache is initially full) and is charac-
terized by an eviction/insertion pmf r which we organize as the M x M
matrix r = (rge), i.e., for each k,¢ = 1,..., M, we have 1, > 0 and
Zi\il Zé\il rge = 1. The RORA associated with the pmf matrix r is
denoted by RORA(r).

We select the cache state €, at time ¢ to be an element (iq,...,ips)
of A(M;N') with the understanding that document i, k = 1,..., M,
is in cache position k at time ¢. RORA(r) implements the following
eviction rule: Introduce a sequence of i.i.d. rvs {(X,Y;), ¢ =0,1,...}
taking values in {1,..., M} x {1..., M} with common pmf r, i.e., for
each t =0,1,..., we have

P((X,Y;) = (k,0)] =14, k,0=1,... M.

The sequences of rvs {(X,Y;), t =0,1,...} and {R, t =0,1,...} are
assumed mutually independent. The document U; to be evicted at time
t is given by

U =1[R; ¢ Si]ix,.

We have U; = 0 whenever R; € S¢, in which case no replacement occurs
and the cache state remains unchanged, i.e., ;41 = Q.

Next, if Ry ¢ S; and (Xy,Y;) = (k,{), then Uy = i; (the document
at position k is evicted) and the new document is inserted in the cache
at position ¢. If k£ < ¢, the documents iyy1,...,% are shifted down
to position k,k+ 1...,¢ — 1 (in that order) while if £ > ¢, the docu-
ments iy, ... ,i;x—1 are shifted up to position £+ 1,...,k (in that order).
When k = ¢, the new document simply replaces the evicted document
at position k.

A document initially at position ¢ in the cache will never be replaced
if

=0 fork<i</{ and (<i<k. (1.21)

If we use row ¢ and column 4 to partition the matrix = into four blocks,
then condition (1.21) expresses the fact that the entries in the northwest
and southeast corners all vanish (including row ¢ and column 7). Let X,
denote the set of cache positions with the property that any document
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initially put there will never be evicted during the operation of the cache,
ie.,
Yp:={it=1,...,M: Eqn. (1.21) holds at i}. (1.22)

Under the IRM with popularity pmf p, the cache states {€,t =
0,1,...} form a Markov chain on the state space A(M;N). The ergodic
properties of this chain are determined by whether the set ¥, is empty or
not. This is discussed in Lemmas 1.11 and 1.12 in the next two sections;
they are established in Vanichpun (2004).

Throughout this discussion we always assume that the cache size M
and the number of cacheable documents N satisfy M +1 < N. We do so
in order to avoid technical cases of limited interest. Indeed, the results
here are still valid for the case N = M + 1, but require slightly different
arguments. We refer the interested reader to Vanichpun (2004).

9.2 Case 1

The set 3 is empty, so that every document in cache is eventually
replaced, i.e., for each i = 1,..., M, there exists a pair k,¢ (possibly
depending on i) with either 1 <k <i</< Morl</{(<i<k<M
such that riy > 0. Here are some well-known policies which fall in
this case: The random policy corresponds to RORA(r) with r given by
TrE = ﬁ foreach k =1,..., M. The FIFO policy also belongs to RORA
with two possibilities for 7, namely r15; = 1 or rps1 = 1. The first (resp.
second) choice corresponds to the cache state (iy,...,iy) being loaded
from left to right with documents ordered from the oldest to the most
recent (resp. from the most recent to the oldest).

In this case, the Markov chain {Q;,t = 0,1,...} is ergodic on the
state space A(M;N); its stationary distribution exists and is given in
the following lemma.

LEMMA 1.11 Assume the input to be an IRM with popularity pmf p.
For RORA(r) with ¥, empty, the cache states {;,t = 0,1,...} is an
ergodic Markov chain on the state space A(M;N') with stationary pmf
on A(M;N) given by

¢
1
mr(s;p) = tlg?o - Zl 1[Q; =s] a.s.
= C(p)'pli)pliz) - -~ pling) (1.23)
for every s = (i1,...,ipn) in A(M;N) with normalizing constant

C(p) == > p()p(i) - plin). (1.24)

(i1, im0 ) EA(MN)
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The stationary pmf is the same for all RORAs in Case 1.

9.3 Case 2

The set X, is not empty, and some documents, once put in cache,
will never be replaced during the operation of the cache, i.e., if )y =
(i1,...,in), then for all t = 1,2, ..., with Q; = (j1,...,jm), we have

Je =1y, LEXp. (1.25)

Here are some examples of RORA policies in that category: As pointed
out in Section 1.3.3, any permutation o of {1,..., N} induces an evic-
tion policy A, which evicts the “smallest” document in cache with doc-
uments o(1),0(2),...,0(N) “ranked” in decreasing order. The docu-
ments o(1),...,0(M — 1), once loaded in the cache, will remain there.
This behavior can be recovered through the RORA(7) policy with ma-
trix 7 of the form r, = 1 for some k£ = 1,..., M, in which case X, has
M — 1 elements, namely {1,...,k—1,k+1,...,M}. If the documents
o(1),...,0(M —1) are initially put in cache (i.e., preloaded) at the other
positions ¢ # k in ¥, this RORA(r) policy will behave like the policy
A, in its steady state regime. The steady state behavior of the cache
under the policy Ay introduced in Section 1.3.3, is that of the RORA(r)
above, this time, the preloaded documents being the M —1 most popular
documents.

To describe the long-run behavior of the cache states {€;,t = 0,1,...},
we go back to (1.25). First, with initial cache state sop = (i1,...,ip) in
A(M;N), let 3p(sg) denote the set of initial documents with positions
in Xp, ie.,

Yr(so) :={ig: L€} (1.26)

Next, we introduce the component
A(r,so) = A{(j1,---,jm) € AMN) © e =g, L€ Sr}. (1.27)

In view of (1.25), once the cache state is in A(r,sp), it remains there
forever. In fact all the states in the component A(r,sy) communicate
with each other, and this set of states is closed under the motion of the
Markov chain. There are (]\]\/[[:”TZ) (M —m)! elements in A(r, sp) and there

are (%)m! distinct components which form a partition of A(M;N). As a
result, when restricted to A(r, sg), this Markov chain is irreducible and
aperiodic, and its ergodic behavior can be characterized as follows:

LEMMA 1.12 Assume the input to be an IRM with popularity pmf p.
For RORA(r) with |¥,| = m for some m = 1,...,M — 1, and initial
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cache state sq, the cache states {,t = 0,1, ...} form an ergodic Markov
chain on the component A(r, so). In particular the limit

Tr.so(S; D) = hm Zl Q, =s] as.

t—oo t
always exists for every s = (iy,...,in) in A(M;N') with
Trs0(ip) = Cr(ps0) ™" [ plie) (1.28)
10 Z¥r (s0)
for every s in A(r,sg), and mp s,(s;p) = 0 otherwise, with normalizing

constant
Cr(p, 50) == > II »Geo). (1.29)

(11,80 )EA(T ,50) 10 Z X7 (50)

10. The miss rate under RORAs
10.1 Case 1

Fix s = {i1,...,im} in A*(M;N), and let A(s|M;N) denote the
subset of A(M;N') defined by

A(S’MJ\[) = {(]1, ,jM) € A(M,N) : {jl,... ,jM} = {’il,... ,ZM}}
By Lemma 1.11, the limit (1.9) exists and is given by

Qr(sip) = > C(p)~"p(1)p(ia) - - pinr)
(G153 )EA(S|MN)
(o) MY plin)plin) - pling) (1.30)

with normalizing constant C'(p) given by (1.24). The last equality at
(1.30) follows from the fact that there are M! elements in A(s|M;N).

Using (1.30) in conjunction with Theorem 1.1, we readily conclude
that under the RORA(r) policy of Case 1 the miss rate (1.8) exists
as a constant which is independent of the initial cache state sy. To
acknowledge this fact, we simply denote this limiting constant by M (p).
Specializing (1.11) leads to

My(p) = C(p)~'M! > plin) - --pling) Y. pli)

{il,...,i]\/[}EA*(M;./\/’) i%{il,...,i]\/j}
= C(p) '(M +1)! Z p(i1) - plirr41)
{’il,...,i]\/[+1}€A*(M+l;./\/’)
= C(p) " (M +1)! Exryan(p) (1.31)
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while the normalizing constant C(p) in (1.24) can be simplified as

> pli)--plin) = M! > plir) -+ plin)
(31y--nying )EA(MN) {i1,.., i JEA*(M;N)
M!- EM,N(p)- (132)

Combining (1.31) and (1.32) we finally get

En1n(p)

Mrlp) = M ) )

= (M +1)®p41,8(P) (1.33)

and a straightforward application of Proposition 1.7 yields

THEOREM 1.13 Under the RORA (r) policy with ¥y empty, for admis-
sible pmfs p and q on N, it holds that My, (q) < My(p) whenever p < q.

10.2 Case 2

Consider now the RORA(7) policy when the set ;. is not empty, say
with |3;.| = m for some m = 1,..., M — 1, and let the cache be initially
in state so in A(M;N). By Lemma 1.12, for each s = {iy,...,ip} in
A*(M; N') the limit (1.9) exists and is given by

Qroso(sP) = D> Tra(s'sp) (1.34)

'€ (s|7,50)
where A(s|r,sg) denotes the subset of A(r, sy) defined by
A(s|r,y so) == {1y -y dm) € Aryso) = {g1, - dn ) = i1y yin )}
The set A(s|r,sg) is non-empty if and only if
Yr(s0) € {i1,. .- im} (1.35)

so that Qrs,(s;p) = 0 whenever this inclusion (1.35) does not hold.
With this in mind we define

A*(r,s0) :i={s ={i1,...,im} € A*(M;N): Eqn. (1.35) holds at s}.

Going back to (1.28) and (1.29), we now conclude that for each s =
{i1,...,ip} in A*(7, s0), it holds

Qrso(s;p) = Z Cr(p,s0)”" H p(Je)
(153 M) EA(s]T,50) JegtXr (so)
= Cr(p,so) '(M-m)- [ nlo) (1.36)

10X (s0)
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where in the last equality we combine the set equality {ji,...,7m} =
{i1,...,inm} with (1.35), and then made use of the identity |A(s|r, so)| =
(M —m)\.

Now, using (1.36) in conjunction with Theorem 1.1, we see that under
the RORA(r) policy of Case 2 the miss rate (1.8) exists as a constant
which depends on the initial cache state sg. We record this fact in the
notation by denoting this limiting constant by My (p;so). As in Case 1,
specializing (1.11) leads to

Mr(p§ 50)
= Cr(p,s0) (M —m)! > I 26 > »p4)
{’il,-..,’i]u}GA*(’l“,So) ig%Er(SQ) ’ig{’il,...,’i]u}
= Cp(ps0) " (M —m+1)!- Exropy1 N (t- D) (1.37)

where the element ¢ in RY is specified by ¢; = 0 for document ¢ in Xy (sg)
and t; = 1 otherwise. Moreover, by the same arguments as in Case 1,
we can simplify the normalizing constant Cp(p, o) as

Cr(p,so) = (M —m)! Ex—m N (E - p). (1.38)
It then follows from (1.37) and (1.38) that

Ey—mii,n(t- D)
EM—m,N(t : p)
= (M -m+1)®y—ms1,n(t- D) (1.39)

My(p;so) = (M —m+1)-

Clearly, the documents in ¥ (sg) do not contribute to the miss rate
since they never generate a miss once loaded in cache — This is regardless
of the order in which they appear in the cache state sg. This intuitively
obvious fact is in agreement with the expression (1.39) from which we see
that for any two initial cache states so and sj, in A(M;N) with Xy (so) =
Yy (s0), we have the equality My (p; so) = My (p;s;). As aresult, we shall
find it appropriate to denote this common value by M. 5,.(50)(P)-

For any pmf p on N, let ¥*(p) denote the set of the m most popular
documents according to the pmf p. Equipped with the expression (1.39),
we are now ready to establish the result for RORA policies in Case 2.

THEOREM 1.14 Under the RORA(r) policy with |¥,| = m for some
m=1,...,M — 1, for admissible pmfs p and q on N, it holds that

My 5(q)(@) < My 54 (p) (D) (1.40)

whenever p < q.
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Proof. The desired result will be established if we can show that the
miss rate function p — M, 5,.(50)(P) as given in (1.39) is Schur-concave
whenever sg is selected so that ¥, (sp) = X*(p).

As we can always relabel the documents, there is no loss of generality
in assuming p(1) > p(2) > ... > p(N), whence ¥*(p) = {1,...,m}
and the element ¢ in (1.39) can be specified as t; = ... = t,, = 0 and
tm+1 = ... = ty = 1. By Proposition 1.7, the mapping ®yr—m+1,n
is increasing and Schur-concave on ]Rf , and by virtue of the defining
property of ¥*(p), we have

My sepy(p) = (M —m+1)- ijlﬂiHN' Qrr—my1,n(t - oi(p)).

The mapping h: RN — R : y — min (y1,...,yn1) is clearly increas-
ing, symmetric and concave, while the mapping ®y/_,,+1,n5 is concave
on ]Rf by Proposition 1.7. Combining these facts with the expression
for My 5+(p)(p) obtained above, we conclude by Proposition 1.8 to the

Schur-concavity (in the pmf vector) of the miss rate functional (1.39)
under the RORA policy when X, (sg) = X*(p). [ |

11. The output under RORAs

We now discuss the popularity pmf of the output generated under the
RORA policies.

11.1 Case 1

As we invoke Theorem 1.2, we can make use of the expressions (1.30)
into the relation (1.14). For each i = 1,..., N, in the notation of Theo-
rem 1.10, this yields

mp(isp) = Y C(p) "M p(i)p(iz) - pling)
sEAT(M;N)

— By () (1.41)

Enn(p)
where the last equality follows from (1.32).
Reporting (1.41) back into (1.13), we conclude that the popularity
pmf pj of the output produced by RORA(r) policy in Case 1 is indeed
of the form (1.20), and Theorem 1.10 gives us

THEOREM 1.15 Under the RORA(r) policy in Case 1, it holds that
Py < P
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When M = 1, any demand-driven policy 7 reduces to the policy that
evicts the only document in cache if the requested document is not in
cache. Specializing the results above. we find that the output pmf pJ is

*(§) = — PN T PR . i=1,....,N 1.42
P Sl p()(A = p(h)) 4

and Theorem 1.15 immediately leads to

COROLLARY 1.16 With M = 1, under any demand-driven replacement
policy m, the popularity pmf p% of the output is given by (1.42), and
satisfies pi < p.

11.2 Case 2

Assume |X,| = m for some m = 1,..., M — 1, and let the cache be
initially in state sg. The pmf 7 on X, (sg)¢ is defined as the conditional
pmf induced by p on ¥ (s0)¢; it is given by

p(i)
Zjle(sO)C p(j)’

(i) = i € Xp(s0)°. (1.43)

For all i in ¥ (sp), it is clear that my 4, (i;p) = 0 while for document i
not in 3y (sp), with the expression for Qy ,(s;p) given in (1.36), we find

my s, (i3p) = > Cr(pyso) (M —m)!- [ plie)
sEA*(1,50): i¢ts i0¢Sr (s0)
EM—m,N(t(l) -p)

EMme(t(?) -p)

)

™)

 EyomN-m-(
a (

EMfm,me

(1.44)

where the element ¢t and t® of RN are specified by tg-l) = t§2) =0 for

document j in X, (sp), tgl) =0, t§2) = 1 and t;l) = t§-2) = 1 whenever
document j # i is not in Xp(so). In the second equality we made use of
the expression (1.38).

Combining (1.44) with (1.13), we immediately get

. () 0 . if i € 2(80) (1 45)
P s 1) = ﬂ(i)E]u_m,N_m_l(ﬂ' ° ) ep - .
o ZjEE(SO)C ﬂ-(j)EMfm,mefl(Tr(j)) 1f ! ¢ E(SO)

Since py. 4, (1) = 0 whenever i belongs to Xy (sp), it is more natural to
seek a comparison between py. ( and the conditional pmf 7.
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THEOREM 1.17 Under the RORA(r) policy with |Xy| = m for some
m=1,...,M — 1, it holds that py. , < .

Theorem 1.17 is essentially the same as Theorem 1.10. We immedi-
ately obtain the desired result upon identifying 7w and 3, (s9)¢ with p
and N in Theorem 1.10, respectively.

12. Zipf-like pmfs

It has been observed in a number of studies that the popularity dis-
tribution of objects in request streams at Web caches is highly skewed.
In Almeida et al. (1996), a good fit was provided by the Zipf distribu-
tion according to which the popularity of the i most popular object is
inversely proportional to its rank, namely 1/i.

In more recent studies by Breslau et al. (1999) and by Jin and Bestavros
(2000a), “Zipf-like” distributions” were found more appropriate; see
Breslau et al. (1999) (and references therein) for an excellent summary.
Such distributions form a one-parameter family. In our set-up, we say
that the popularity pmf p of the N-valued rvs {R;, t = 0,1,...} is
Zipf-like with parameter o > 0 if

p(i) = 7 i=1,...,N with Co(N):=> i  (146)
=1

The pmf (1.46) will be denoted by p,. It is always the case that p, (1) >
Pa(2) > ... > pa(N). The case o = 1 corresponds to the standard Zipf
distribution and as studied by Breslau et al. (1999), the value of o was
typically found to be in the range 0.64 — 0.83.

Zipf-like pmfs are skewed towards the most popular objects. As oo —
0, the Zipf-like pmf approaches the uniform distribution w while as o« —
00, it degenerates to the pmf (1,0,...,0). Extrapolating between these
extreme cases, we expect the parameter a of Zipf-like pmfs (1.46) to
measure the strength of skewness, with the larger «, the more skewed
the pmf p,,. The next result shows that majorization indeed captures
this fact, and so it is warranted to call a the skewness parameter of the
Zipf-like pmf.

LEMMA 1.18 For 0 < a < f3, it holds that p, < pg.

Lemma 1.18 can already be found in Marshall and Olkin (1979), B.2.b,
p- 130, and is an easy by-product of Lemma 1.6. In the spirit of Lemma

7Such distributions are sometimes called generalized Zipf distributions.
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1.18 and the aforementioned folk theorem (1.3), we expect the miss rate
of the cache replacement policy to decrease as « increases. This has been
shown to be the case using simulations in Gadde, Chase and Rabinovich
(2001).

Zipf-like pmfs are used in the discussion of the LRU policy in the next
sections.

13. The miss rate under the LRU policy

Under the IRM with admissible popularity pmf p, it is known (Aven,
Coffman and Kogan (1987), Thm. 9, p. 130 and Coffman and Den-
ning (1973), Thm. 6.5, p. 272) that the LRU cache states {Q;,t =
0,1,...} form a stationary ergodic Markov chain over the finite state
space A(M;N) with stationary distribution given by

t
o1
mLrU(S;p) = tlirglo - 1[Q:=5s] a.s.
T=1

B p(i1) - plin)
I ) (47

for every s = (i1,...,ipn) in A(M;N). Consequently, the limit (1.9)
exists for each s = {i1,...,ip} in AX(M;N) as

QLRU(S;p) = Z M{)E‘h) — 'p]E]]V[) . (148)
Groianyen(sirny =1 (1= 221 p(je))

where A(s|M;N) is as defined in Section 1.10.1.
The miss rate of the LRU policy under IRM can then be evaluated
from (1.11) as

plin) < pling) (1= S0 (i) )

Mypru(p) = - : (1.49)
(il,...,ngA(M;N) évill(l - Z?:l p(i5))
13.1 A counterexample

Contrary to what transpired with RORA policies, the miss rate under
the LRU policy is not Schur-concave in general, and consequently the
folk theorem (1.3) does not hold. This is demonstrated through the
following example developed for M = 3, N = 4, and the family of pmfs

1
p(xvy):(x71_2y_xayay)v 0<y<1



Comparing strength of locality of reference 27

0.064

0.0621- 0.0121

0.061-

0.01151

LRU miss rate
)
o
bl
-
LRU miss rate

0.0111

0.0105

Figure 1.1. LRU miss rate when M = Figure 1.2. LRU miss rate when M =
3, N =4,y = p(3) = p(4) = 0.05, 3, N =4,y = p(3) = p(4) = 0.01,
p(1) = z and p(2) = 0.9 — p(1) p(1) = z and p(2) = 0.98 — p(1)

with z in the interval [% —y,1 — 3y]. Under these constraints, the com-
ponents of the pmf p(z,y) are listed in decreasing order and for any
given y it holds that p(x,y) < p(2’,y) whenever < 2’ in the inter-
val [3 —y,1 — 3y]. Therefore, if the miss rate under LRU was indeed
a Schur-concave function in the popularity pmf, we would expect the
functions z — Mpru(p(x,y)) to be monotone decreasing in = on the
interval [ —y,1 — 3y].

Figures 1.1 and 1.2 display the numerical values of Mrru(p(z,y)) as
a function of x with y = 0.05 and y = 0.01, respectively; this was done
by numerical evaluation of (1.49). In both cases, the miss rate of the
LRU policy is not monotone decreasing in  on the range [% —y,1—3y],
with the trend becoming more pronounced with decreasing y. In short,
the miss rate is not Schur-concave under the LRU policy.

13.2 LRU with Zipf-like popularity pmfs

While the miss rate is not Schur-concave under the LRU policy, the
desired monotonicity (1.3) is nevertheless true in an asymptotic sense
when the popularity pmf is restricted to the class of Zipf-like pmfs.

THEOREM 1.19 Assume the input to have a Zipf-like popularity pmf p,,
for some a > 0. Then, there exists o* = a*(M,N) > 0 and A > 0 such
that Mrru(pg) < MLRU(P,) Whenever o < o and o+ A < 3.

This result is a byproduct of the asymptotic equivalence

M,
lim LRU (pa) _

Jim = (1.50)
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Figure 1.3. LRU miss rate when the Figure 1.4. LRU miss rate when the
input has a Zipf-like popularity pmf p,, input has a Zipf-like popularity pmf p,,
for @ small (0 < a <1) for a large (a > 1)

established in Vanichpun and Makowski (2004a). We have also carried
out simulations of a cache operating under the LRU policy when the
input has a Zipf-like popularity pmf p,.® The number of documents is
set at NV = 1,000 while the cache size is M = 100. The miss rate of the
LRU policy is displayed in Figure 1.3 and 1.4 for o small (0 < a < 1)
and « large (a > 1), respectively. It appears that the miss rate is indeed
decreasing as the skewness parameter « increases across the entire range
of a. This suggests that the folk theorem on miss rates probably holds
for the LRU policy when the comparison is made within the class of
Zipf-like popularity pmfs, hence the following

CONJECTURE 1.20 For arbitrary cache size M and number N of doc-
uments, the function « — Mygru(p,) Is strictly decreasing on [0, 00).

14. The output under the LRU policy
With the expressions (1.47) for the stationary distribution of the LRU

cache state, it is a simple matter to check for each ¢ = 1,..., N, that
miru(i;p) = > 7ru(s;p)
seN;(M;N)

_ Z p(i1) - plinr) (1.51)

8We choose simulations over numerical evaluation of (1.49) because this expression is not
suitable for numerical evaluation due to a combinatorial explosion.
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where A;(M;N) denote the set of elements in A(M;N') which do not
contain i, i.e., Aj(M;N) = {s = (i1,...ip7) € AM;N) = i & s}.
Theorem 1.2 then gives the output popularity pmf in the form

p(3) 3 p(i) - - - plinm) (1.52)

Piruli) = - :
Miru(p) SEA AN é\/[:ll(l - Z?ﬂ p(ij))

foreachi =1,..., N, as we make use of (1.16). We begin with a positive
result.

LEMMA 1.21 The LRU policy is a good policy.

In what follows, let p} denote the popularity pmf of the output in-
duced by an input with Zipf-like popularity pmf p,, (instead of the more
cumbersome Py py ,)-

14.1 Another counterexample

In view of Lemma 1.21, it is tempting to expect that the majorization
comparison pjry < P also holds under the LRU policy. This is not the
case as the following example demonstrates: With M = 3 and N = 4
under the Zipf-like popularity pmf (1.46) with o = 3, we have computed
the output popularity pmf under the LRU policy using (1.52). The
numerical values of both input and output popularity pmfs are presented
in Table 1.1.

Table 1.1. p, and p}, under the LRU policy when the input distribution is Zipf-like
with parameter o = 3

i 1 2 3 4

p, 0.8491 0.1061 0.0314 0.0133
ps 0.0118 0.2031 0.3853 0.3998

By the definition of majorization (1.17)-(1.18), the comparison p}, <
Pp,, requires
min_ pa(i) < min_ p} (i), (1.53)

i=1,...,.N i=1,...,.N

in clear contradiction with Table 1.1, and therefore does not hold. On
the other hand, the comparison p, < p, is not valid either since it calls
for the unmet requirement

N < * (7). 1.54
i:r{f?’pra(l) _i:rﬁ?ija(z) (1.54)



30

In short, p, and p}, are not comparable in the majorization ordering.
This situation does not represent an isolated incident as the next theorem
shows; its proof is available in Vanichpun and Makowski (2004b).

THEOREM 1.22 Assume the input to have a Zipf-like popularity pmfp,,
for some o« > 0. If the number of documents N and the cache size M
satisfy the condition N < M!, then under the LRU policy, there exists
o* = o*(M, N) such that p}, < p,, does not hold whenever o > o*.

14.2 A conjecture

Theorems 1.15 and 1.17 were valid for all values of M and N, and
for arbitrary admissible pmfs. While the counterexamples discussed ear-
lier dash our hope to get an analogous result for the LRU policy, the
possibility remains, fueled by Corollary 1.16, that the positive result is
nevertheless valid in some appropriate range of the parameters M and
N. We now explore this issue still with Zipf-like popularity pmfs (1.46).

CONJECTURE 1.23 Assume that the popularity pmf is the Zipt-like pmf
(1.46) with « > 0. For each N = 1,2,..., there exists an integer M* =
M*(a; N) with 1 < M* < N such that p}, < p, under the LRU policy
whenever M = 1,..., M*.

In support of this conjecture, we have carried out simulations of the
cache operating under the LRU policy when the input pmf is Zipf-
like with parameter @ = 0.8,1 and 2 and with N = 1,000. We find
the output popularity pmfs for different values of cache size, namely
M =10,50,100,500. The resulting output popularity pmfs in the orig-
inal order of documents are shown in Figure 1.5, while the results after
rearranging documents in the decreasing order of their output probabil-
ities are displayed in Figure 1.6.

From Figure 1.6 (a), when a = 0.8, the comparison p < p, holds
for M = 10,50. Indeed, from their respective plots, we observe that the
pmfs p, and p}, when arranged in decreasing order intersect only once,
namely p%([7]) < pa(i), i =1,...,k, and p%([i]) > pal(i), i = k+1,..., N,
for some k =1,...,N — 1, where p}([1]) > p5([2]) > ... > pi([N]) are
the components of p}, arranged in decreasing order. This is the sufficient
condition for majorization comparison provided in Proposition 1.3.

However, for « = 0.8 and M = 100, 500, despite the fact that in Figure
1.6 (a), pf looks uniform in the range where document rank is smaller
than M, the comparison p}, < p,, is invalid since the necessary condition
(1.53) does not hold. This violation, min;—;  n pi(i) < pa(N), can be
easily seen from Figure 1.5 (a) or from the subplot inside Figure 1.6 (a).
For a = 1 and 2, by the same arguments, we conclude from Figures 1.5
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(b)-(c) and 1.6 (b)-(c) that the comparison p% < p, holds for M = 10
but does not hold for other cache sizes M = 50,100, 500. Hence, these
experimental results agree with Conjecture 1.23, and suggest that the
value of M*(a; N) in Conjecture 1.23 decreases as « increases.
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